0 / 0 / 0
Регистрация: 20.12.2014
Сообщений: 8
|
|
Теорвер: предел отношения СВ к ее дисперсии20.12.2014, 17:16. Показов 1396. Ответов 9
Метки нет Все метки)
(
Здравствуйте! Такая задача:
Случайная величина En имеет нормальное распределения с параметрами 0 и n. То есть мат. ожидание 0, а дисперсия n. Вопрос такой: существует ли предел отношения такой величины En к ее дисперсии n, при n стремящейся к бесконечности. Пытался что-то сделать с помощью предельных теорем и теорем о сходимости, но, видимо, всё не то. Центральная предельная теорема, закон больших чисел, но это всё для суммы величин, а не для одной. Со сходимостями тоже как-то не вышло: по вероятности, по распределению, не вижу ничего подходящего. Не пойму вообще, что делать с дисперсией, стремящейся к бесконечности. Намекните хотя бы, в каком направлении думать, с чего начать? Буду признателен. P.S. Я сумел понять, что если предел существует, то он равен нулю. Пусть предел некоторое число a. Тогда случ. величина попадет в любую окрестность точки а. Но величина может быть как положительной, так и отрицательно. А лишь только ноль содержит в любой своей окрестности числа как положительные, так и отрицательные. Но всё это не очень помогло понять, в каком направлении думать.
0
|
20.12.2014, 17:16 | |
Ответы с готовыми решениями:
9
Предел отношения факториалов
|
![]() |
|
21.12.2014, 17:51 | |
Думаю так.
С увеличением D плотность все более будет приближаться к равномерному закону. Для того, чтобы увеличить D надо, соответственно увеличить объем выборки. Если из той же генеральной совокупности, то закон и характеристики не изменятся. Если нет, то и закон может быть другим. Но в любом случае знаменатель растет быстрее, чем числитель
0
|
0 / 0 / 0
Регистрация: 20.12.2014
Сообщений: 8
|
|
21.12.2014, 21:06 [ТС] | |
OldFedor, у меня была еще такая идея. Если рассмотреть функцию распределения для нормального распределения, то выйдет 0.5(1+erf(x/sqrt(2D))), и при D->oo это равно 0.5. Но получается какой-то бред, что для любого х, вероятность быть меньше х равна 50%.
Но с другой стороны, если это 0.5 еще поделить на D то выйдет точно 0. Возможно, я где-то напутал.. P.S. как тут у вас формулы и теха вставлять?
0
|
![]() |
|
21.12.2014, 22:15 | |
Я уже писал, что просто изменять дисперсию нельзя.
Только за счет увеличения выборки, но при этом закон и числовые характеристики не изменятся. Сама постановка задачи D=>oo не корректна.
0
|
22.12.2014, 08:17 | |
Нормальное распределение y(x) графически выглядит как колокол. Чем больше дисперсия - тем он ниже и шире, сохраняя площать под колоколом. А если его поделить на дисперсию - и кривая и площать устремятся к нулю. Значит, предел: y=0
![]()
0
|
22.12.2014, 19:01 | |
"равномерное на всей числовой оси" - это ноль, поскольку любое отличие от нуля дает бесконечную вероятность.
![]()
0
|
22.12.2014, 19:01 | ||||||
Помогаю со студенческими работами здесь
10
Разработайте программу, которая позволяет найти предел отношения двух последовательных чисел ряда Фибоначчи с заданной точностью ТеорВЕР Теорвер Теорвер о женщинах Определить предел g(x), зная предел f(x) и предел выражения с ними Искать еще темы с ответами Или воспользуйтесь поиском по форуму:
|
|
Новые блоги и статьи
![]() |
||||
Реляционная модель и правила Кодда: фундамент современных баз данных
Codd 05.04.2025
Конец 1960-х — начало 1970-х годов был периодом глубоких трансформаций в области хранения и обработки данных. На фоне растущих потребностей бизнеса и правительственных структур существовавшие на тот. . .
|
Асинхронные операции в Django с Celery
py-thonny 05.04.2025
Разработчики Django часто сталкиваются с проблемой, когда пользователь нажимает кнопку отправки формы и. . . ждёт. Секунды растягиваются в минуты, терпение иссякает, а интерфейс приложения замирает. . . .
|
Использование кэшей CPU: Максимальная производительность в Go
golander 05.04.2025
Разработчикам хорошо известно, что эффективность кода зависит не только от алгоритмов и структур данных, но и от того, насколько удачно программа взаимодействует с железом. Среди множества факторов,. . .
|
Создаем Telegram бот на TypeScript с grammY
run.dev 05.04.2025
Одна из его самых сильных сторон Telegram — это интеграция ботов прямо в экосистему приложения. В отличие от многих других платформ, он предоставляет разработчикам мощный API, позволяющий создавать. . .
|
Паттерны распределённых транзакций в Event-Driven микросервисах
ArchitectMsa 05.04.2025
Современные программные системы всё чаще проектируются как совокупность взаимодействующих микросервисов. И хотя такой подход даёт множество преимуществ — масштабируемость, гибкость, устойчивость к. . .
|
Работа с объемным DOM в javascript
Htext 04.04.2025
Сегодня прочитал статью тут о расходах памяти в JS, ее утечках и т. п. И вот что вспомнил из своей недавней практики. Может, кому пригодится. Хотя, в той статье об этом тоже есть.
Дело в том, что я. . .
|
Оптимизация производительности Node.js с помощью кластеризации
run.dev 04.04.2025
Масштабирование приложений для обработки тысяч и миллионов запросов — обыденная задача для многих команд. Node. js, благодаря своей асинхронной событийно-ориентированной архитектуре, стал популярной. . .
|
Управление зависимостями в Python с Poetry
py-thonny 04.04.2025
Стандартный инструмент для установки пакетов в Python - pip - прекрасно справляется с базовыми сценариями: установил пакет командой pip install и используешь его. Но что произойдёт, когда разные. . .
|
Мониторинг с Prometheus в PHP
Jason-Webb 04.04.2025
Prometheus выделяется среди других систем мониторинга своим подходом к сбору и хранению метрик. В отличие от New Relic, который использует агентный подход и отправляет данные во внешнее хранилище,. . .
|
Пакет Context в Golang: Управление потоками и ресурсами
golander 04.04.2025
Работа с горутинами в Go часто напоминает управление непослушными детьми - они разбегаются кто куда, делают что хотят и не всегда завершаются вовремя. К счастью, в Go 1. 7 появился пакет context,. . .
|