1 / 1 / 0
Регистрация: 19.03.2015
Сообщений: 23
|
|
1 | |
Вращения платоновых тел в 3х мерном пространстве19.03.2015, 12:23. Показов 1078. Ответов 1
Метки нет (Все метки)
Добрый день, уважаемые форумчане, помогите, пожалуйста, разобраться с задачей.
Вопрос следующий: необходимо посчитать для всех 5 платоновых тел количество вращений в 3х-мерном пространстве, которые оставляют эти тела неизменными. Хотелось бы разобраться хотя бы на примере тетраэдра. Я профан и т.к так с наскоку разобраться было трудно первым шагом стало изготовление моделей тел и процесс кручения-верчения. Но мои рассуждения как-то расходятся с найденными в литературе. Мои пассуждения: "У тетраэдра 4 вершины и 4 грани, если "пропустить" ось симметрии через одну из вершин и противолежащую грань, то можно насчитать 3 вращения на каждую вершину - итого - 12. Если "пропустить" ось симметрии через середину 1ого из ребер в середину другого ребра, то можно насчитать 2 вращения на каждуюпару ребер, а пар ребер 3, следовательно + еще 6. Итого получилось 18. Что нашлось по теме - "Рассмотрим подробнее симметрии тетраэдра, т.е. правильного многогранника {3, 3}. Любая прямая, проходящая через любую вершину и центр тетраэдра, проходит через центр противоположной грани. Поворот на 120 или 240 градусов вокруг этой прямой принадлежит к числу симметрий тетраэдра. Так как у тетраэдра 4 вершины (и 4 грани), то мы получим всего 8 прямых симметрий. Любая прямая, проходящая через центр и середину ребра тетраэдра проходит через середину противоположного ребра. Поворот на 180 градусов (полуоборот) вокруг такой прямой также является симметрией. Так как у тетраэдра 3 пары ребер, мы получаем еще 3 прямые симметрии. Следовательно, общее число прямых симметрий, включая тождественное преобразование, доходит до 12. Можно показать, что других прямых симметрий не существует и что имеется 12 обратных симметрий. Таким образом, тетраэдр допускает всего 24 симметрии" - отсюда - http://ru.convdocs.org/docs/index-117.html и другая версия - "Сколько допускает тетраэдр вразений или каков порядок группы? ...всякая ось симметрии n-ого порядка делает возможным (n-1) разных поворотов. В тетраэдре есть 4 оси третьего порядка, которые проходят через его вершины и центры лежащих напротиы них граней, а так же 3 оси второго порядка , соединяющих середины противоположных (не имеющих общих вершин) ребер. Принято еще прибавлять тождественный поворот. Итого - 4*2+3*1+1 = 12." - отсюда - http://files.school-collection... 6_2006.pdf Кол-во же возможных вращений для других групп - куба-октаэдра - 24, икосаэдра-додекаэдра - 60. Правильно ли я понимаю задачу и где ошибка в моих рассуждениях?
0
|
19.03.2015, 12:23 | |
Ответы с готовыми решениями:
1
Построение платоновых тел и их вращение в заданной плоскости вокруг своей оси Треугольники в 3х мерном пространстве Задача в 3х-мерном пространстве Найти точку в к-мерном пространстве |
10828 / 7189 / 3901
Регистрация: 14.01.2014
Сообщений: 16,453
|
|
19.03.2015, 13:38 | 2 |
Вот здесь у Вас ошибка - на каждую пару противоположных ребер есть только по одному вращению на 180 градусов. В итоге группа правильного тетраэдра имеет только 12 вращений.
1
|
19.03.2015, 13:38 | |
19.03.2015, 13:38 | |
Помогаю со студенческими работами здесь
2
Две точки в n-мерном пространстве X=(х1, х2, ..., хn), Y=(y1, y2, ...,yn) Две точки в n-мерном пространстве Задача на векторы в в н-мерном пространстве Построить окружности в 3-х мерном пространстве. Искать еще темы с ответами Или воспользуйтесь поиском по форуму: |
|
Новые блоги и статьи | |||||
Книги и учебные ресурсы по C#
InfoMaster 08.01.2025
Базовые учебники и руководства
Одной из лучших книг для начинающих является "C# 10 и . NET 6 для начинающих" Эндрю Троелсена и Филиппа Джепикса . Книга последовательно раскрывает основные концепции. . .
|
Что такое NullReferenceException и как исправить?
InfoMaster 08.01.2025
NullReferenceException - одно из самых распространенных исключений, с которым сталкиваются разработчики на C#. Это исключение возникает при попытке обратиться к членам объекта (методам, свойствам или. . .
|
Что такое Null Pointer Exception (NPE) и как это исправить?
InfoMaster 08.01.2025
Null Pointer Exception (NPE) - это одно из самых распространенных исключений в Java, которое возникает при попытке использовать ссылку на объект, значение которой равно null. Это исключение относится. . .
|
Русский язык в консоли C++
InfoMaster 08.01.2025
При разработке программ на C++ одной из частых проблем, с которой сталкиваются русскоязычные программисты, является корректное отображение кириллицы в консольных приложениях. Эта проблема особенно. . .
|
Telegram бот на C#
InfoMaster 08.01.2025
Разработка ботов для Telegram стала неотъемлемой частью современной экосистемы мессенджеров. C# предоставляет мощный и удобный инструментарий для создания разнообразных ботов, от простых. . .
|
Использование GraphQL в Go (Golang)
InfoMaster 08.01.2025
Go (Golang) является одним из наиболее популярных языков программирования, используемых для создания высокопроизводительных серверных приложений. Его архитектурные особенности и встроенные. . .
|
Что лучше использовать при создании класса в Java: сеттеры или конструктор?
Alexander-7 08.01.2025
Вопрос подробнее:
На вопрос: «Когда одновременно создаются конструктор и сеттеры в классе – это нормально?» куратор уточнил: «Ваш класс может вообще не иметь сеттеров, а только конструктор и геттеры. . .
|
Как работать с GraphQL на TypeScript
InfoMaster 08.01.2025
Введение в GraphQL и TypeScript
В современной разработке веб-приложений GraphQL стал мощным инструментом для создания гибких и эффективных API. В сочетании с TypeScript, эта технология. . .
|
Счётчик на базе сумматоров + регистров и генератора сигналов согласования.
Hrethgir 07.01.2025
Создан с целью проверки скорости асинхронной логики: ранее описанного сумматора и предополагаемых fast регистров. Регистры созданы на базе ранее описанного, предполагаемого fast триггера. То-есть. . .
|
Как перейти с Options API на Composition API в Vue.js
BasicMan 06.01.2025
Почему переход на Composition API актуален
В мире современной веб-разработки фреймворк Vue. js продолжает эволюционировать, предлагая разработчикам все более совершенные инструменты для создания. . .
|
Архитектура современных процессоров
inter-admin 06.01.2025
Процессор (центральный процессор, ЦП) является основным вычислительным устройством компьютера, которое выполняет обработку данных и управляет работой всех остальных компонентов системы. Архитектура. . .
|
История создания реляционной модели баз данных, правила Кодда
Programming 06.01.2025
Предпосылки создания реляционной модели
В конце 1960-х годов компьютерная индустрия столкнулась с серьезными проблемами в области управления данными. Существовавшие на тот момент модели данных -. . .
|