6 / 6 / 0
Регистрация: 15.09.2011
Сообщений: 35
|
|
Свойства степеней с рациональным показателем09.10.2011, 19:39. Показов 9472. Ответов 24
Метки нет Все метки)
(
Запуталась... Почему некое число с рациональным показателем может быть только положительным числом? Разве х^(1\3) не равно корню третьей степени из х? Почему?
Добавлено через 3 часа 15 минут Люди, у кого есть соображения на этот счет? Объясните, пожалуйста! Я никак не соглашаюсь, что не может быть отрицательного числа при нечетности
0
|
09.10.2011, 19:39 | |
Ответы с готовыми решениями:
24
Степень с рациональным показателем Создать двумерный массив, в котором индексами будут основания степеней, а значения будут значениями степеней чисел Установка Виндоуса не рациональным способом |
Змеюка одышечная
![]() 9864 / 4595 / 178
Регистрация: 04.01.2011
Сообщений: 8,560
|
|
09.10.2011, 19:54 | |
1
|
6 / 6 / 0
Регистрация: 15.09.2011
Сообщений: 35
|
|
09.10.2011, 20:20 [ТС] | |
В том-то и дело, что это не мои соображения... Учебники утверждают - если степень - дробное число, то число, возводимое в степень, должно быть больше или равно0. А я считаю, что если в знаменателе степени нечетное число, то возводимое число может быть и отрицательным. И соответственно строю график y= x^(2\3) не так, как учебники дают. У них - х больше или = 0, а у меня и отриц числа. Что все же является правдой? Считаю, что права я)) I am a rebel)))
1
|
![]() ![]() |
|
09.10.2011, 20:23 | |
0
|
![]() ![]() |
|
09.10.2011, 20:27 | |
Странные у вас учебники. Вообще, например
1
|
6 / 6 / 0
Регистрация: 15.09.2011
Сообщений: 35
|
|
09.10.2011, 21:04 [ТС] | |
Ну, я такого не говорю... Я имею ввиду - напр x^(11|3) - x ведь может быть отриц числом?
Добавлено через 2 минуты Ведь когда в знаменателе показателя степени нечетное число, то основание может быть отриц?
0
|
6 / 6 / 0
Регистрация: 15.09.2011
Сообщений: 35
|
|
09.10.2011, 21:12 [ТС] | |
Скажите прямо - т е могут быть отриц основания, если показатель степени - дробное число, где в знаменателе - нечетное?
Добавлено через 1 минуту Шок! Учебники врут десятиклассникам! Сейчас фото графиков функций выложу.
1
|
![]() ![]() |
|
09.10.2011, 21:26 | |
Если дело в комплексном поле происходит, то может быть. Если же в поле действительных чисел и дробь несократима с четным знаменателем, то не может, с нечетным же знаменателем - может
2
|
Змеюка одышечная
![]() 9864 / 4595 / 178
Регистрация: 04.01.2011
Сообщений: 8,560
|
|
09.10.2011, 23:47 | |
http://www.wolframalpha.com/in... 282%2F3%29
возможно в учебнике оговорено про то, что рассматривается только неотрицательная часть. Добавлено через 1 час 48 минут но для http://www.wolframalpha.com/in... 281%2F3%29
2
|
![]() 3132 / 1325 / 156
Регистрация: 19.12.2009
Сообщений: 1,808
|
|
10.10.2011, 02:45 | |
![]() Решение
Мда, ребята, чувствуется, что Вы давно в школе учились
![]() Я конечно тоже не вчера закончил, но не брезгую вспоминать некоторые моменты, ведь математик не пытается сразу из пушки палить по воробьям, а начинает от меньшего калибра переходить к большему. Начнем сначала. Thinker, к чему Вы вспомнили про комплексные числа? Я узнал об их существовании только в 11-классе, а понятие поле я осознал только на первом курсе. Зачем пугать людей? Вы бы ещё сказали элемент мультипликативной группы К4, он же частный случай кватернионов Гамильтона - Кэли. ![]() Короче, показательная функция определялась в школе исключительно множестве не отрицательных вещественных чисел. Вопрос почему? Нет это не чистая формальность и не обман школьников, просто если рассматривать действие этих функций на множестве отрицательных чисел, без введения комплексных чисел, начинаются казусы. Например. Вот Вы вспомнили про корень кубический. Мы хотим работать с показателями степеней, как с обычными числами, стало быть для них справедливы обычные операции. В таком случае получится такая вещь Это равенство очевидно справедливо только в поле по модулю два. Так что очевиден казус. Вопрос в чем фишка. А в том, что не всегда можно переставлять местами операции Тогда вопрос какой операции отдавать предпочтения. Короче начинается охинея. А если ещё сюда припахать граничный переход для введения иррационального показателя степени, тогда вообще могила. Конечно введение комплексной единицы решило бы здесь много проблем, но поверьте десятиклассники так не думают. Мне кажется это бы добавило бы им ещё больше проблем и нервов. Так что такое постулирование мы сделали, чтобы не возится с модулем и значительно облегчить себе жизнь и сберечь нервы. И запомните Простите, если чуточку был резок ![]()
9
|
Змеюка одышечная
![]() 9864 / 4595 / 178
Регистрация: 04.01.2011
Сообщений: 8,560
|
|
10.10.2011, 03:00 | |
Eugeniy, я бы так не сформулировала, хотя и были подозрения в сторону показательной функции.
0
|
Змеюка одышечная
![]() 9864 / 4595 / 178
Регистрация: 04.01.2011
Сообщений: 8,560
|
|
10.10.2011, 15:35 | |
Jaguar, в общем случае не равно.
1
|
Змеюка одышечная
![]() 9864 / 4595 / 178
Регистрация: 04.01.2011
Сообщений: 8,560
|
|
10.10.2011, 15:47 | |
Jaguar, в смысле, если не оговорен знак x.
2
|
Диссидент
![]() ![]() 27710 / 17328 / 3810
Регистрация: 24.12.2010
Сообщений: 38,979
|
|
10.10.2011, 17:04 | |
![]() Решение
Это просто разные функции.
Функция задается 1.Областью определения. 2.Значениями. Если хоть что-то не совпадает - функции разные. Я могу выдумать например, такую функцию: Y = Bait(x) = x для x>0. И она не совпадает с Y = x
3
|
![]() ![]() |
|
10.10.2011, 21:03 | |
Ну, это ТОЛЬКО с оговоркой, что x - произвольное значение
Ладно, есть здравое зерно в Ваших рассуждениях, но только для действительных чисел. В комплексном поле все вроде гладко. Вы сознательно исказили равенство, прекрасно зная, что с комплексными числами такой фокус не пройдет, так как корень n-ой степени имеет n комплексных корней. Но, спорить не хочу, в этой теме и правда тонкие моменты. Почему бы тогда не восьмимерную алгебру Кэли, разве что она не ассоциативна и не коммутативна, хоть и с делением ![]() А понятие множества Вы уже в школе знали (с учетом всей противоречивости) ![]()
2
|
10.10.2011, 21:03 | ||||||
Помогаю со студенческими работами здесь
20
Построить большое количество графиков рациональным способом
Вычисление неопределённого интеграла с дробно-рациональным выражением и радикалами Сколько членов является рациональным числом в разложении бинома Искать еще темы с ответами Или воспользуйтесь поиском по форуму:
|
|
Новые блоги и статьи
![]() |
||||
BASH scripting - the best cases [PurpleSchool]
jigi33 08.04.2025
Занятия BASH в PurpleSchool - отличные примеры для внедрения в практику
(see screenshots and file names)
|
Результаты исследования от команды MCM (март 2025 г.)
Programma_Boinc 07.04.2025
Результаты исследования от команды MCM (март 2025 г. )
В рамках наших текущих исследований мы продолжаем изучать гены, которые имеют наибольшую вероятность развития рака легких, выявленные в рамках. . .
|
Рекурсивные типы в Python
py-thonny 07.04.2025
Рекурсивные типы - это типы данных, которые определяются через самих себя или в сочетании с другими типами, которые в свою очередь ссылаются на исходный тип. В мире программирования такие структуры. . .
|
C++26: Объединение и конкатенация последовательностей и диапазонов в std::ranges
NullReferenced 07.04.2025
Работа с последовательностями данных – одна из фундаментальных задач, с которой сталкивается каждый разработчик. C++ прошел длинный путь в эволюции средств для манипуляции коллекциями – от. . .
|
Обмен данными в микросервисной архитектуре
ArchitectMsa 06.04.2025
Когда разработчики начинают погружаться в мир микросервисов, они часто сталкиваются с парадоксальным правилом: "два сервиса не должны делить один источник данных". Эта мантра звучит повсюду в. . .
|
PostgreSQL в Kubernetes: Автоматизация обслуживания с CNPG
Mr. Docker 06.04.2025
Администраторы баз данных сталкиваются с целым рядом проблем при обслуживании PostgreSQL в Kubernetes: как обеспечить правильную репликацию данных, как настроить автоматическое переключение при. . .
|
Async/await в TypeScript
run.dev 06.04.2025
Асинхронное программирование — это подход к разработке программного обеспечения, при котором операции выполняются независимо друг от друга. В отличие от синхронного выполнения, где каждая последующая. . .
|
Многопоточность в C#: Синхронизация потоков
UnmanagedCoder 06.04.2025
Многопоточное программирование стало неотъемлемой частью разработки современных приложений на C#. С появлением многоядерных процессоров возможность выполнять несколько задач параллельно значительно. . .
|
TypeScript: Классы и конструкторы
run.dev 06.04.2025
TypeScript, как статически типизированный язык, построенный на основе JavaScript, привнес в веб-разработку новый уровень надежности и структурированности кода. Одним из важнейших элементов этой. . .
|
Многопоточное программирование: Rust против C++
golander 06.04.2025
C++ существует уже несколько десятилетий и его поддержка параллелизма постепенно наращивалась со временем. Начиная с C++11, язык получил стандартную библиотеку для работы с потоками, а в последующих. . .
|